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EXECUTIVE SUMMARY 
This report presents a comprehensive machine learning based approach to wetland identification 
within Nova Scotia. This work is in support of the province’s commitment under the Climate 
Change Plan for Clean Growth to leverage nature-based solutions for mitigating coastal and inland 
flood risks (Action 12). Recognizing the pivotal role of wetlands in flood regulation alongside their 
myriads of ecosystem services, this initiative seeks to enhance provincial resilience through 
enabling improved environmental stewardship. 

The inadequacy of the current Nova Scotia Wetland Inventory in accurately representing forested 
wetland ecosystems underscores the necessity for a refined inventory to better gauge climate 
change impacts and opportunities, notably with respect to flooding. Consequently, this report 
outlines the development of a desktop methodology employing lidar and advanced remote 
sensing/classification techniques at the provincial scale.  

Although this report is focused on methods and presents a preliminary wetland assessment, our 
classification results do suggest a significantly higher overall proportion of wetland areas (27.5% 
not including water), specifically swamp type wetlands, when compared to existing provincial 
wetland inventories (6.8%). When restricting our results to areas to low vegetation height we get a 
more similar 7.2%. Though these results are not intended as an update without further refinement 
and validation, this increase is in line with the perceived bias in the current inventory against tree 
covered swamps due to limitations in the collection methods. 

This report details the effectiveness of our approach and suggests a potential for future expansion 
to include climate change projections. Overall, it presents an adaptable classification method at 
the provincial scale which can be applied more generally. This proposed method is intended for the 
Nova Scotia Department of Environment and Climate Change’s consideration amongst others, to 
assist in various efforts to facilitate a more automated classification approach to ecosystem 
monitoring.  

KEY ELEMENTS OF THE PROPOSED APPROACH INCLUDE: 
• An analysis of available, provincial scale, remotely sensed datasets and various derived 

indexes in a context of wetland mapping including lidar and Sentinel-1/2 satellite data.  
• A brief review of various machine learning tools available in ESRI ArcGIS software.  
• Development of 38 selected 10m resolution province-wide explanatory rasters  
• Supervised wetland AutoML classification model trained on 2,041 sample locations 
• Specialized approach producing 10+ million polygon segments spanning the province 
• Wetland type prediction calculated for each polygon segment  
• A comparison against existing wetland inventories 
• A suite of python-based tools encompassing the entire workflow 
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1 INTRODUCTION 

1.1 BACKGROUND 
 

Wetlands are a highly valuable ecosystem for several reasons, including water purification through 
runoff buffering, carbon sequestration, flood control, and pollution mitigation (Gallant et al., 2020; 
Reis et al, 2017; Tozer et al. 2018). They are typically highly productive and biodiverse, creating 
critical hotspots for biodiversity conservation. 

It is estimated that over 3 million km2, or over 20%, of global wetlands have been lost since 1700, 
primarily due to human land usage (Fluet-Chouinard et al. 2023). Negative effects of wetland loss 
are numerous, including habitat loss, flooding, and increased greenhouse gas emissions from land 
reclamation (Li et al. 2018). 

Canada contains over 1 million km2 of wetlands, which cover approximately 13% of the country’s 
terrestrial area. Canadian wetlands account for almost one quarter of the remaining global 
wetlands (ECCC 2016). Almost 4,000 km2 of these wetlands are found in the province of Nova 
Scotia (NSECC 2024). Chignecto, Musquodoboit Harbour, and Southern Bight-Minas Basin are 
three wetlands in Nova Scotia which are considered of International Importance by the Ramsar 
Convention on Wetlands and are considered “significant for humanity as a whole” (Convention on 
Wetlands Secretariat, 2024). As wetland loss continues globally, it will be increasingly important to 
monitor changes to wetlands in Canada at the federal and provincial level. 

Wetland delineation and classification is traditionally done in-situ, which can be labour intensive, 
time-consuming, and inaccessible (Amani et al. 2017). For large scale classification, remote 
sensing offers the ability to collect high resolution datasets quickly and cost effectively (Mahdavi et 
al. 2017; Amani et al. 2019). Remotely sensed wetland data can be used for baseline 
establishment, short and long-term change detection, and mapping at high resolutions (Ballanti et 
al. 2017). 

The Nova Scotia Department of Natural Resources and Renewables (NRR) conducted a 
comprehensive provincial wetland inventory in 2004, utilizing aerial photographs captured between 
1985 and 1997. This inventory was later updated by the reclassification of LANDSAT imagery from 
2000 to 2002 (Government of Nova Scotia, 2019). Wetlands smaller than 0.5 hectares were 
excluded from this inventory, which poses a limitation on our ability to fully understand the 
abundance of smaller isolated or headwater wetlands, potentially crucial for hydrological and 
ecological functions.  
 

As per the current inventory, freshwater wetlands cover approximately 360,462 hectares, 
constituting roughly 6.8% of the total land area, while salt marshes span 17,060 hectares, 
representing 0.3% of the total land area in Nova Scotia (Government of Nova Scotia, 2019). Despite 
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these findings, there remains a significant challenge in accurately identifying and quantifying 
forested wetlands, particularly swamps. The existing dataset falls short in adequately capturing the 
extent of forested wetlands due to limitations in aerial interpretation techniques, compounded by 
similar spectral signatures exhibited by forested uplands and wetlands (Jahncke et al., 2018).  
The underrepresentation of wetlands, notably swamps, highlights a well-documented challenge 
inherent in the current inventory and photo-interpretation methodologies at large (Jahncke et al., 
2018). These limitations hinder our ability to effectively manage and conserve wetland resources 
across the province, highlighting the need for more advanced and precise mapping techniques to 
address these shortcomings. 

1.2 DEFINITIONS 
Wetlands are defined federally in Canada as “areas of marsh, fen, peatland or water, whether 
natural or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish or 
salt” (ECCC 2016). The Canadian Wetland Classification System also provides the definition of 
“terrain affected by water table at, near or above the land surface and which is saturated for 
sufficient time to promote wetland or aquatic processes” (National Wetlands Working Group 
1997). 

The following table is adapted from National Wetlands Working Group (1997) and contains 
information on wetland classification: 

Table 1. Wetland classification. 

Wetlands 
Peatland Mineral Wetland 

Bog  Peatland receiving water 
exclusively from precipitation 
and not influenced by 
groundwater; Sphagnum-
dominated vegetation. 

Marsh Periodic or persistent standing 
water or slow-moving surface 
water which is circumneutral 
to alkaline and generally 
nutrient-rich. Vegetation is 
dominated by graminoids, 
shrubs, forbs, or emergent 
plants. 

Fen Peatland receiving water rich in 
dissolved minerals; vegetation 
cover composed dominantly of 
graminoid species and brown 
mosses. 

Shallow 
Water 

Wetlands with free surface 
water up to 2 m deep, present 
for all or most of the year, with 
less than 25% of the surface 
water area occluded by 
standing emergent or woody 
plants. Submerged or floating 
aquatic plants usually 
dominate the vegetation. 



 

  
NOVA SCOTIA COMMUNITY COLLEGE – APPLIED GEOMATICS RESEARCH GROUP 3 

 

IMPROVED METHODS FOR WETLAND IDENTIFICATION 

Swamp Peatland dominated by trees, 
shrubs, and forbs; waters are 
rich in dissolved minerals. 

Swamp Periodically standing surface 
water and gently moving, 
nutrient-rich groundwater, 
with vegetation dominated by 
woody plants often more than 
1 m high. 

 

• “Bogs are peat-covered wetlands (peatlands), in which the vegetation shows the effects of 
a high water table and a general lack of nutrients.” 

• “Fens are peatlands characterized by a high water table, but with very slow internal 
drainage by seepage. “ 

• “Marshes are wetlands that are periodically inundated by standing or slowly moving water 
and hence are rich in nutrients.” 

• “Swamps are wetlands where standing or gently moving waters occur seasonally or persist 
for long periods, leaving the subsurface continuously waterlogged.” 

• “Shallow water wetlands, […] a transition stage between lakes and marshes” 

Note that this method and report does not include mapping of the wetland class ‘shallow 
water’ which are mixed with marshes in the provided training data. These features are typically 
more complex to map adequately due to their inherent association with neighboring wetlands.   

1.3 TECHNIQUES FOR WETLAND MAPPING 
Traditional techniques for wetland mapping have primarily relied on manual expert delineation and 
Random Forest algorithms for classification and analysis. Random Forest is a versatile and robust 
machine learning algorithm that constructs a multitude of decision trees during training and 
outputs the class that is the mode of the classes (classification), offering high accuracy without 
overfitting the data (Breiman 2001). Recently, there has been a growing interest in exploring the 
potential of fully convolutional methods for environmental mapping, indicating a significant shift 
towards more automated and sophisticated approaches (Long 2015, Mainali 2023). Even still, 
many recent successful wetland studies rely on random forest-based classification (LaRocque 
2020, Amani 2019, DeLancey 2021).  

Previous similar work to this study has been undertaken in the region, specifically surrounding HRM 
which employed a random forest classifier of wetlands using satellite observations including radar, 
high resolution lidar, and several lidar derived metrics such as local texture and roughness 
(Jahncke, 2018).  Federally, the Canadian government has an ongoing program to amalgamate 
such wetland mapping data into the Canadian National Wetlands Inventory (CNWI). This dataset 
follows a standard classification schema and is sourced from various levels of government though 
no standard methodology for deriving these data is known to the authors of this report.  
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In this study, we focus first on experimenting with several methods available in ArcGIS Pro 3.1.1, 
leveraging its comprehensive suite of tools for spatial analysis and developing a final repeatable 
workflow. Concurrently, a parallel project is investigating the capabilities of tools available directly 
in Google Earth Engine, aiming to compare the effectiveness and applicability of different platforms 
in enhancing wetland inventory accuracy and efficiency. This dual approach allows us to assess a 
broad spectrum of methodologies and identify the most promising strategies for modernizing 
wetland mapping in Nova Scotia. 

In the context of mapping spatial extents of features such as wetlands, there exists a suite of tools 
and functions available in ArcGIS as described below.  

1.3.1 Detect Objects Using Deep Learning  
This tool leverages deep learning algorithms within ArcGIS to automatically identify and delineate 
wetland features from high-resolution imagery, facilitating efficient and scalable mapping efforts 
by learning from labeled examples to improve accuracy over traditional manual methods. Though 
deep learning approaches have been showing increasing utility, their added complexity proved an 
impediment to pursuing these tools for province wide results at this time.  

1.3.2 Forest-Based Classification and Regression (FBCR) 
The Forest-Based Classification and Regression tool in ArcGIS employs an ensemble of decision 
trees (Random Forests) to analyze spatial data, providing a robust means for classifying wetland 
areas by incorporating a variety of input features, including lidar and satellite imagery, to predict 
wetland presence with high accuracy. Extensive testing indicated very poor and erroneous results 
from this tool specifically and ultimately it was abandoned in favor of other options.  

1.3.3 Presence-only Prediction (MaxEnt) 
Utilizing the MaxEnt (Maximum Entropy) model within ArcGIS, this approach focuses on presence-
only location data, making it particularly useful for areas with limited information (Tesfamariam, 

2022). It estimates the distribution of wetland types by maximizing entropy to predict the likelihood 
of wetland presence across the landscape, based on environmental and spatial variables. Initial 
test with this technique showed very promising results and should be considered further.  

 

Figure 1 shows the basic workflow of a maxEnt type presence only model. Top right, it accepts point location presence 
inputs. Bottom right and middle - the model can be provided a selection of prepared rasters such as satellite images, lidar 
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elevations, or other special indexes (middle). The resulting model (leftmost) can produce a 0-100% probability estimation 
of occurrence when provided with additional data similar in nature to the inputs.  

1.3.4 AutoML in ArcGIS 
AutoML in ArcGIS streamlines the application of machine learning algorithms to spatial data, 
automating the process of model selection, training, and optimization. It allows for the efficient 
identification of the most effective algorithm and parameter settings for specific wetland mapping 
tasks, significantly reducing the expertise and time required to deploy advanced analytics for 
environmental monitoring and assessment. 

AutoML can perform in multiple modes, including BASIC, and ADVANCED, whereby the overall 
complexity and amount of automated parameter tuning may increase. This can provide a more 
robust cross-validated model where accuracy is most important.  

The training process within the AutoML framework automatically tests, tunes, and incorporates 
various supervised machine learning algorithms to construct the best performing ensemble model. 
The selection includes Linear regression, primarily for smaller datasets, as well as a series of 
various implementations of decision tree-based classification models including Random Trees, 
Decision Trees, XGBoost, Light GBM, and Extra Tree algorithms, each offering distinct 
advantages in terms of speed, interpretability, and handling complex data structures. An additional 
tree-based model, CatBoost is particularly versatile, effectively processing mixed data types. 
AutoML seamlessly integrates these algorithms, evaluating and optimizing them to collectively 
form an ensemble model that delivers optimal performance for specific analytical tasks. This 
automated ensemble approach ensures that the final model leverages the combined strengths of 
each algorithm, maximizing accuracy and efficiency. 

When tested, in general, against each of the previously indicated options available in ArcGIS, 
AutoML was determined to be the best available option both in terms of sophistication and 
reliability. The AutoML classification tool is therefore central to our proposed wetland mapping 
approach.  

1.4 FEATURES FOR WETLAND MAPPING 
All machine learning type classifiers rely on suitable input datasets for optimal results. This is 
especially true with classifiers such as random forest, which perform no alterations to input data 
directly. As such, the success in rendering a high-quality province wide wetland inventory depends 
upon sourcing and preparing specialized map feature layers which specifically aid in differentiating 
both wetlands from non-wetlands (uplands), as well as individual wetland types. A selection out of 
the following metrics was compiled for the complete extent of Nova Scotia and included in our 
prototype wetland mapping process of the province. A complete list is included in the methods 
section.  

1.4.1 Lidar Derived Metrics 
The province wide lidar inventory provides a significant and unique advantage for upgrading the 
provincial wetland inventory. The occurrence of wetlands is naturally related to elevation and 
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elevation derivatives such as local slope and metrics which can be derived from lidar elevation 
including various wet area indexes.  

1.4.1.1 Digital Elevation Model (DEM) 
The digital elevation model (DEM), also known as the digital terrain model (DTM) is a foundational 
form of lidar data in which the lidar point cloud has been classified as valid ground returns and 
rasterized (Aguilar et al. 2010). The DEM has been reported as the highest performing classification 
feature for detecting wetlands in some cases (LaRocque 2020). This dataset is the basis for many 
additional lidar derived metrics used in wetland mapping.  

 

Figure 2 shows a lidar derived DEM of central south-western Nova Scotia (Springfield). Drumlin glacial till mounds are 
seen as topographic highs, whereas flat, possible wetland and water areas are visible as well. Lidar DEMs are typically 
shaded to accentuate surface features as is presented here.  

1.4.1.2  Canopy Height Model (CHM) 
Canopy height model (CHM) is critical for providing accurate tree canopy characteristics, such as 
growth and volume estimations (Khosravipour et al. 2015). These data are typically computed as 
the vertical difference between the DEM and the Digital Surface Model (DSM). The resulting value 
represents the normalized height from the ground to the, typically, highest valid lidar return. For a 
CHM to be considered a true canopy model, typically the analysis is limited to vegetation by 
masking or removing structures such as buildings. CHMs are valuable for further characterizing 
wetland structures such as treed swamp forest canopy and vegetation characteristics. Wang et al. 
(2017) have demonstrated, for example, that CHM values can have a high correlation with certain 
short standing wetland vegetation species.  
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1.4.1.3 Slope 
Slope serves as a critical factor in wetland identification. Areas with lower slope angles are 
typically more conducive to wetland formation, as they facilitate water accumulation and reduced 
drainage, compared to regions with steeper slopes (Uuemaa et al., 2018). 

 

Figure 3 shows a direct computation of the previous lidar DEM extent showing slope. Slope is displayed in, for example 
here, 0-90 degree (Springfield Area, NS). 

The slope is calculated as the rate of change in elevation (z) over a distance (x), which can be 
directly computed from the lidar DEM where: 

𝑠𝑙𝑜𝑝𝑒 =  
𝑑𝑧

𝑑𝑥
 

1.4.1.4 Depth To Water (DTW) 
Depth to Water (DTW) is an analytical derivative of the lidar elevation model which estimates an 
elevation difference between a given raster location and hydraulically least-cost connected water 
or drainage location elevation. Water locations can be defined as lakes, streams, or rivers (Murphy 
et al., 2007).  Functionally this metric highlights areas which exhibit greater levels of water 
saturation and less drainage and are thus a very powerful metric for determining the presence of 
wetlands.   

1.4.1.5 Geomorphon 
Geomorphons are a form of pattern-based classification which describes each cell of a DEM 
according to one of the following: flat, peak, ridge, shoulder, convex slope, slope, concave slope, 
foot slope, valley, pit/depression (Stepinski, 2011; Gioia et al. 2021). Geomorphons have been 
shown to successfully detect wetlands when paired with deep-learning methods (Mainali 2023). 



 

  
NOVA SCOTIA COMMUNITY COLLEGE – APPLIED GEOMATICS RESEARCH GROUP 8 

 

IMPROVED METHODS FOR WETLAND IDENTIFICATION 

 

 

Figure 4 shows (top) the category output for the geomoprhon tool in ArcGIS. Geomprhon categories include flat (1), Peak 
(2), Ridge (3), Shoulder (4), Spur (5), Slope (6), Hollow (7), Foot slope (8), Valley (9), Pit (10). Below shows the scalar 
output. Note that flat and low features become highly apparent (Springfield Area, NS). 

1.4.1.6 Deviation of the Mean Elevation (DEV) 
 Deviation of the Mean Elevation (DEV) is a variation of the Topographic Position Index (TPI), which 
refines the analysis by focusing on the elevation deviation of a specific pixel from the mean 
elevation within a specified window, normalized by the standard deviation of that window. This 
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approach enhances the model's ability to highlight flat areas in regions of low topographical relief, 
making it particularly effective over the conventional TPI for delineating wetland areas. DEV is 
highly useful when analyzing heterogeneous landscapes, as it is scaled by local ruggedness 
(Lindsay et al. 2015). 

  

Figure 5 shows DEV calculations of various kernel sizes. Shows here are a more high-resolution DEM of 100m kernel (left) 
and DEV processed with 1000m kernel (right). Altering the DEV kernel highlights differing landform features. (Tusket Lake 
Area, NS) 

𝐷𝐸𝑉(𝐷) =  
𝑧0 − 𝑧 0
𝑆𝐷

 

Where: 

• D = window size 
• z0 = elevation of the window centre cell 
• z̅0 = window mean elevation 

1.4.1.7 Topographic Wetness Index (TWI) 
The Topographic Wetness Index (TWI) is a quantitative measure that assesses the potential for soil 
saturation and water accumulation in each area, based on topography (Kopecký et al., 2021).  
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Figure 6 shows an example Topographic Wetness Index (TWI).  Note that water bodies and low laying (poor draining areas) 
are preferentially highlighted. This analysis is done by computing the drainage across lidar data. (Springfield Area, NS) 

TWI is calculated as the natural logarithm of the ratio of the total catchment area to the flow width, 
divided by the tangent of the slope. This index is pivotal for identifying areas with higher moisture 
levels, which are indicative of wetland presence. 

𝑇𝑊𝐼 = 𝑙𝑛

𝑡𝑜𝑡𝑎𝑙 𝑐𝑎𝑡𝑐ℎ𝑚𝑒𝑛𝑡 𝑎𝑟𝑒𝑎
𝑓𝑙𝑜𝑤 𝑤𝑖𝑑𝑡ℎ

tan (𝑠𝑙𝑜𝑝𝑒)
 

1.4.1.8 Hydrological Fill Difference  
The Hydrological Fill process is essential in preparing elevation models for accurate computation 
of topographic wetness indices (TWI) and depth to water (DTW). It involves simulating the filling of 
depressions in the terrain to ensure hydraulic pathways are appropriately represented in the 
elevation model. The Hydrological Fill Difference metric specifically identifies areas that may not 
be adequately drained or do not drain well in the DEM. This identification is crucial for accurately 
analyzing areas prone to wetland conditions by highlighting potential discrepancies in hydraulic 
connectivity, thus ensuring more accurate wetland mapping. 
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Figure 7 shows how the fill difference (FILLD) analysis can help indicate specific discrete water and low depressions. This 
technique is computed as a requirement for the TWI data and is included due to its convenience. (Springfield Area, NS) 

1.4.1.9 Chrome DEM 
In this study, we introduce the novel Chrome DEM metric, which employs a distinctive approach by 
calculating the maximum of the mean slope across an increasing scale which effectively 
normalizes and scales the index appropriately. In effect, this balances the detection of both micro-
habitat variations and broader landscape features. In practice this analytical layer performs only 
marginally better than slope directly in high slope areas, whereas it tends to differentiate flat 
‘higher’ areas from flat ‘lower’ areas uniquely. This layer has also proven useful for visually 
inspecting low laying areas to highlight possible forested wetlands, for example, through 
inspection directly.  
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Figure 8 show the results of the CHROME analysis, which is computed from lidar slope. Note that low lying flat features 
are highly visible and differentiated generally from higher lying flat areas. (Springfield Area, NS) 

This technique seems to ensure a comprehensive and comparably uniform metric that significantly 
enhances the accuracy of wetland mapping across diverse geographical landscapes. 

𝐶ℎ𝑟𝑜𝑚𝑒𝐷𝐸𝑀 = μ30𝑚{𝑚𝑎𝑥15𝑚[𝜎5𝑚(𝑎𝑡𝑎𝑛𝑆)]} − 𝑎𝑡𝑎𝑛𝑆 

Where: 

• μ = average 

• σ = standard deviation 

• S = slope 

1.4.2 Satellite Derived Metrics 
Satellite-derived metrics, particularly from Sentinel-2 bands, provide essential spectral 
information for wetland mapping. This data, capturing a range of wavelengths, enables the precise 
identification and classification of wetland areas through the analysis of vegetation health and 
moisture content. 

Sentinel-2 bands and their associated wavelengths can be found in the following table from Kaplan 
& Avdan (2017): 

Table 2. Sentinel-2 bands (from Kaplan & Avdan 2017). 

Sentinel-2 Bands Central Wavelength (µm) Resolution (m) 
Band 1 - Coastal aerosol 0.443 60 
Band 2 - Blue 0.490 10 
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Band 3 - Green 0.560 10 
Band 4 - Red 0.665 10 
Band 5 - Vegetation Red Edge 0.705 20 
Band 6 - Vegetation Red Edge 0.740 20 
Band 7 - Vegetation Red Edge 0.783 20 
Band 8 - NIR 0.842 10 
Band 8A - Vegetation Red Edge 0.865 20 
Band 9 - Water vapor 0.945 60 
Band 10 - SWIR - Cirrus 1.375 60 
Band 11 - SWIR 1.610 20 
Band 12 – SWIR  2.190 20 

 

1.4.2.1 Sentinel-2 Cloud Free Mosaics 
Satellite data can be, and typically is, incorporated into a classification model directly as bands 
(Jahncke 2018; Amani 2019; LaRocque 2020; DeLancey 2021). However, special care must be 
made to ensure that clouds are removed from such data. This can be done by carefully selecting 
and compositing cloud free scenes, though this proves to be a challenge over large geographies, 
while maintaining consistent conditions such as lighting and ground changes. A popular approach 
to facilitate this conveniently is to integrate a large number of satellite images over time such that 
the individual changes scene to scene can be averaged out in some way. Typically, this technique 
is employed on externally hosted satellite processing systems such as Google Earth Engine (GEE, 
Gorelick et al 2017). These scenes can be composited using the average (mean) or perhaps median 
observed value, and clouds can be further suppressed with special compensation or masking. A 
particularly robust method of cloud masking is specifically available on the GEE platform, namely, 
the Cloud Score Plus feature (Pasquarella 2023). This specialized masking value, derived from 
deep learning of cloud occurrences, can be specifically applied to the Harmonized Sentinel-2 MSI 
Level-2A catalog of satellite images to very competently suppress cloud occurrences to produce 
very high-quality cloud-free mosaics. For the methods of this paper, we produce, using GEE 
platform, 10m resolution Nova Scotia scale Sentinel-2 mosaics which contain the median cloud 
filtered observations of Red, Green, Blue, and NIR bands for each season (spring, summer, and fall) 
across the entire available Sentinel-2 catalog (approximately March 2017 to Dec. 2023). We further 
generate resampled 10m resolution for all additional bands (see above table) specifically for the 
fall season.  

This data collectively provides a remarkably robust analytical tool for ecological mapping across 
Nova Scotia. Although compiling these types of data are made much more feasible and high quality 
in systems such as GEE, a similar procedure could be undertaken to compile the data from free 
sources. Whereas GEE is only available for free to academic and research purposes, it is worth 
considering other similar options which may be more readily available to the provincial 
government.  
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Figure 9 shows an example a location for a cloud-free median RGB composite of all available Sentienl-2 fall time images 
available on GEE collection ‘Harmonized Sentinel-2 MSI Level-2A’. Clouds are further filtered using the cloud score plus 
deep learning feature. Near Infrared is available but not shown. (Springfield Area, NS) 

 

Figure 10 shows the same as previous but filtered to summertime images. This is done by filtering scenes to an 
appropriate range of Julian days before computing the median observed pixel values. (Springfield Area, NS) 



 

  
NOVA SCOTIA COMMUNITY COLLEGE – APPLIED GEOMATICS RESEARCH GROUP 15 

 

IMPROVED METHODS FOR WETLAND IDENTIFICATION 

 

Figure 11 again shows an example Sentinel-2 median mosaic of the spring-time. This is computed in a similar way to both 
fall and summer by adjusting Julian day ranges. (Springfield Area, NS) 

1.4.2.2 Normalized Digital Vegetation Index (NDVI) 
To further increase the signal of vegetation, specifically health and wetness, the Normalized Digital 
Vegetation Index (NDVI) is perhaps the most popular index to be computed directly from satellite 
bands. Today NDVI is a commonly used index, which was first described by Deering (1978).  
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Figure 12 shows an example of a standard NDVI calculation derived from Near Infrared and Red satellite bands. Note that 
vegetation becomes highly differentiable from water and roads. Subtle variations are also important across vegetated 
areas – generally indicating variations in health, growth state, or species. (Springfield Area, NS) 

The following equation is from Deering (1978): 

𝑁𝐷𝑉𝐼 =  
𝑅𝑛𝑖𝑟 − 𝑅𝑟𝑒𝑑

𝑅𝑛𝑖𝑟 + 𝑅𝑟𝑒𝑑
 

1.4.2.3 Normalized Anthocyanin Reflectance Index (NARI) 
The Normalized Anthocyanin Reflectance Index (NARI) effectively quantifies the autumnal 
anthocyanin accumulation in canopies of Ericaceae, a family of flowering plants in acidic and 
nutrient-poor environments. NARI outperforms the Normalized Difference Vegetation Index (NDVI) 
for mapping specific wetland species, significantly improving the estimated area of Ericaceae-
dominated shrublands, for example. NARI's sensitivity to anthocyanin, a pigment that can be 
prevalent in Ericaceae species during the autumn, allows for the detection of these shrubs when 
they are most distinct from other vegetation. This is particularly useful in peatlands where these 
species might indicate more acidic conditions (bogs) or less acidic, nutrient-rich conditions (fens) 
(Bayle et al 2019). Note that NARI is dependent on coarser resolution Sentienl-2 bands, and this is 
not natively 10m in resolution as RGBNIR, or NDVI.  
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Figure 13 shows that the NARI index is capable of further differentiating vegetated environments. Note for example the 
prevalence of bight areas bounding some low laying lake perimeter. (Tusket Lake Area, NS) 

The following equation for NARI is provided by Bayle et al. (2019): 

𝑁𝐴𝑅𝐼 =  

1
𝐵3

−
1
𝐵5

1
𝐵3

+
1
𝐵5

 

1.4.2.4 Red Edge Inflection Point (REIP) 
The Red-Edge Inflection Point (REIP) is particularly valuable for wetland classification because it 
captures the precise transition between the red (R) and near-infrared (NIR) parts of the spectrum 
where chlorophyll absorption features can suddenly change. This shift not only reflects changes in 
chlorophyll content but also indicates various plant conditions such as Leaf Area Index (LAI), 
nutrient levels, and water content. These are all crucial for analyzing the health and, importantly, 
composition of wetland ecosystems. As chlorophyll content increases, the red-edge shifts to 
longer wavelengths, and vice versa, allowing detailed monitoring of vegetation dynamics within 
these environments (Herrmann et al. 2010). Similar to NARI, this index relies on coarser resolution 
Setntinel-2 bands (B5, red edge, 20m) and this produces a coarser index than RGBN or NDVI.  
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The following equation for REIP is provided by Herrmann et al. (2019): 

𝑅𝐸𝐼𝑃 = 700 + 40[
(
𝐵4 + 𝐵7

2
) − 𝐵5

𝐵6 − 𝐵5
] 

1.4.2.5 Sentinel-1 VV and HV 
Sentinel-1, a European Space Agency satellite equipped with C-band Synthetic Aperture Radar 
(SAR), utilizes VV (vertical-vertical) and VH (vertical-horizontal) polarizations to distinguish surface 
features in wetland areas. These Sentinel-1 images are similarly available on GEE and can be made 
into seasonal median composites much the same way as was done with Sentinel-2 data, though 
without complication due to clouds which are generally not visible in C-band radar. VV polarization 
is particularly sensitive to variations in soil moisture and surface roughness, making it highly 
effective for detailed soil moisture mapping. VH polarization, on the other hand, is responsive to 
vegetation structure and water content, which is understood to be valuable for the classification 
and monitoring of wetland vegetation (Ma et al 2020).  

To compensate for the systematic bias of terrain angle common to active radar system such as 
Sentinel-1, various ratios of observations (such as VV, VH) may be computed. In addition to VV and 
VH directly, we include a normalized difference ratio value calculated as such:  

𝑆1𝑁𝐷 = 
𝑉𝑉 − 𝑉𝐻

𝑉𝑉 + 𝑉𝐻
 

1.4.3 Features Not Implemented  
The following additional metrics have been identified to be valuable but have not been included in 
this study to date. They are provided here as a future reference for continued analysis. Generally, 
these layers are not included due to various processing constraints and/or prioritization, but each 
should be considered for future work.  
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1.4.3.1 Normalized Difference Water Index (NDWI) 
The Normalized Difference Water Index (NDWI) is effective for enhancing water features and 
assessing water clarity but is less suitable than NDVI for differentiating vegetation types in 
wetlands (McFeeters, 1996). This is computed by replacing the red band of NDVI with the green 
band, which has greater penetration in water. While it otherwise may not have significant 
improvement versus NDVI for terrestrial land types, it may be worth integrating for shallow water-
type wetlands. 

NDWI is described in McFeeters (1996) as such: 

𝑁𝐷𝑊𝐼 =  
𝐵3 − 𝐵8

𝐵3 + 𝐵8
 

1.4.3.2 Moisture Stress Index (MSI) 
The Moisture Stress Index (MSI), calculated as the ratio of near-infrared (NIR) to shortwave-infrared 
(SWIR) reflectance, is effective for identifying moisture content in vegetation and has been shown 
to improve the accuracy of peatland identification (Pang et al., 2020). While not incorporated into 
our study, MSI is noted for its potential to distinguish peatlands from marshes specifically and 
could be valuable for refinements to mapping wetland types (Hunt & Rock, 1989). 

𝑀𝑆𝐼 =  
𝑅𝑠𝑤𝑖𝑟

𝑅𝑛𝑖𝑟
 

1.4.3.3 Normalized Difference Infrared Index (NDII) 
Normalized Difference Infrared Index (NDII) is recognized for its robust performance in detecting 
moisture content in wetland vegetation (Hardisky et al., 1983; Pang et al., 2020). NDII's application 
in differentiating marsh and peatland areas has been validated in studies and practical 
implementations in Nova Scotia, as noted by J. Gallop, NSECC (pers. comm., 2024). The following 
adapted equation is described by Hardisky et al. (1983): 

𝑁𝐷𝐼𝐼 =  
𝑅𝑛𝑖𝑟 − 𝑅𝑠𝑤𝑖𝑟

𝑅𝑛𝑖𝑟 + 𝑅𝑠𝑤𝑖𝑟
 

1.4.3.4 Enhanced Vegetation Index (EVI) 
Enhanced Vegetation Index (EVI) is a variation of NDVI where the green vegetation signal is 
enhanced (Huete et al. 1997), and the atmospheric conditions and canopy background are 
reduced (Wardlow et al. 2007). EVI is used to monitor vegetation growth and coverage (Pang et al. 
2020). The following EVI formula is taken from Wardlow et al. (2007): 

𝐸𝑉𝐼 = 𝐺[
𝜌𝑁𝐼𝑅 − 𝜌𝑟𝑒𝑑

(𝜌𝑁𝐼𝑅  +  𝐶1 )(𝜌𝑟𝑒𝑑 −  𝐶2 )( 𝜌𝑏𝑙𝑢𝑒  +  𝐿)
] 

Where: 

• G = gain factor (2.5) 
• ρ = atmospherically corrected surface reflectance 
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• C1 = aerosol resistance coefficient (6) 
• C2 = aerosol resistance coefficient (7.5) 
• L = canopy background adjustment (1) 

 

1.4.3.5 dual-pol Radar Vegetation Index (DpRVI)  
The effectiveness of the dual-pol Radar Vegetation Index (DpRVI) in quantifying vegetation 
biophysical parameters, as demonstrated by Mandal et al. (2020), indicates its potential in 
ecological monitoring applications. This represents one of many possible variants on methods to 
normalize Sentinel-1 to compensate for terrain angle and other biases. Mandal et al. (2020) 
describe DpRVI as: 

DpRVI= 
4𝜎VH ͦ

𝜎VV ͦ +  𝜎VH ͦ
 

Where σ is a dimensionless backscatter coefficient.  

1.4.3.6 Significant Water-Depth Increases (SWDI) 
Zhang et al. (2022) present a framework to detect Significant Water-Depth increases (SWDI) 
directly observable from Sentienl-1 (S1) SAR backscatter. This may be of specific use when 
considering the role of wetland features with respect to flood water abatement. The SWDI is 
calculated in part using Normalized Difference Backscatter Index (NDBI) which considers S1 
observations before and after a flood events, with the equation:  

NDBI = (σ°t −  σ°p) / SDp 

Where: 

• σ°t is the target image pixel backscatter 
• σ°p is the mean pre-event backscatter 
• and SDp is the standard deviation of the pre-event backscatter values. 

1.4.3.7 Topographic Position Index (TPI)  
The Topographic Position Index (TPI) is a measure calculated by dividing the elevation of a specific 
cell in a Digital Elevation Model (DEM) by the mean elevation of a designated neighborhood around 
that cell in various ways. This metric is used to identify the relative position of landforms, while not 
distinguishing between ridges, valleys, and flat areas. TPI values can indicate areas likely to 
accumulate water, thus aiding in the identification of potential wetland locations (De Reu et al., 
2013; Vinod, 2017). For our study, the desired effect of TPI is captured with various DEV 
calculations as described. Generally, though variants exist:  

𝑇𝑃𝐼 =  
𝑐𝑒𝑙𝑙 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛

𝑚𝑒𝑎𝑛 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑢𝑟𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑
 

1.4.3.8 Curvature  
Halabisky et al. (2023) demonstrate the effectiveness of integrating multi-scale topographic 
indices, including curvature, for identifying wetland formation areas. The study utilized curvature to 
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highlight landscape depressions where water may accumulate, which is valuable for inferring 
wetlands obscured by forest canopy or that are ephemeral in nature. This may allow for the 
enhancement of wetland mapping accuracy by delineating areas prone to water accumulation and 
retention. Curvature at a point on a surface, generally, can be calculated using partial derivatives of 
the elevation (Z) with respect to the horizontal coordinates in various methods (such as a plan or 
profile curvature). In practice, curvature metrics tend to be highly sensitive to subtle errors in lidar 
and may appear complex over otherwise subtle terrain variations.   

1.4.3.9 Valley Bottom Flatness 
Gallant and Dowling (2003) describe multiresolution index of valley bottom flatness (MRVBF) which 
leverages the DEM to delineate depositional areas. This index may have significant correlation to 
the described geomorphon scalar value, but likely may still warrant further exploration.  

1.4.3.10 SAGA Topographic Wetness Index 
While our methodology utilizes a streamlined calculation of the wetness index as outlined, Mattivi 
et al. (2019) present an extensive comparison of more complex algorithms, like the SAGA GIS tools, 
to derive more nuanced water accumulation metrics. These approaches were not examined in 
detail for this study.  

1.4.4 Existing Wetland Map Products of Nova Scotia  

1.4.4.1 Nova Scotia Wetland Inventory  
As noted previously, Nova Scotia Department of Natural Resources has an existing inventory of 
wetlands which does span the entire province. This assessment was digitized based on large-scale 
photography and updated with satellite imagery. The schema of wetland classifications used 
conform to the the Canadian Wetland Classification System, and as such, it does appear this this 
dataset has been integrated into the larger Canadian National Wetlands Inventory (CNWI). These 
data can be most easily accessed through the Provincial Landscape Viewer 
(https://nsgi.novascotia.ca/plv/). Modified versions of this layer are available in various forms 
though the Nova Scotia department of Environment and Climate Change directly.  

1.4.4.2 Ecological Land Classification for Nova Scotia  
An alternative to the official Nova Scotia Wetland Inventory exists as part of the wider Ecological 
Land Classification (ELC) for Nova Scotia (Neily 2003 and 2017). This analysis was conducted 
across Nova Scotia whereby the province is divided into 9 distinct Ecoregions, and further divided 
into 39 Ecodistricts. This extensive mapping exercise was based on Nova Scotia’s Bio-physical 
Land Classification (BLC) whereby the province was segmented into small distinct topographical 
base units where topographic position, soil drainage, and soil texture attributes were considered. 
This was refined with extensive expert knowledge, forest inventory data, and field validation to 
provide a meaningful and comprehensive ecological categorization across the province. The 
smallest ecological unit, Ecosections, covers the province at approximately 1:10,000 scale. This 
product includes wetland classifications which are noted as poorly drained Ecosections of smooth 
topography (Neily 2017). 

 

https://nsgi.novascotia.ca/plv/
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2 METHODOLOGY 

2.1 DATA SOURCES AND INPUTS 
The following is a precise list of all data utilized in the methods of this report. Additional information 
related to each can be found in the previous section. The coverage of each listed data includes the 
entirety of Nova Scotia.  

Name Description Details Source Resolution Period 

DEM Lidar Elevation Model CGVD2013 m GeoNova/AGRG 1m 2016-2020 

CHM Lidar Canopy Height Model  Height in m GeoNova/AGRG 1m 2016-2020 

S1P Sentinel 1 Spring Mosaic Bands 2,3,4,8 GEE 10m 2014-2023 

S2P Sentinel 2 Spring Mosaic Bands 2,3,4,8 GEE 10m 2017-2023 

S2F Sentinel 2 Fall Mosaic Bands 2,3,4,8 GEE 10m 2017-2023 

S2F20 Sentinel 2 Fall MSI Mosaic Bands 5,6,7,8A,11,12 GEE 20m 2017-2023 

DTW Depth to Water Height in cm NSECC 5m 2016-2020 

PTS  Wetland Class ID Expert Identified NSECC 2,041 points  

 

2.1.1 Provincial Lidar Data  

  

Figure 14 shows the overview of both the lidar derived elevation model (left) and the canopy height model (right). These 
data are the culmination of many individual aerial lidar scans across the province conducted between 2016 and 2020. 

The Applied Geomatics Research Group (AGRG) has access to lidar DEM and CHM tiles provided 
by GeoNOVA. Through various research activities, the AGRG routinely refines aspects of the 
combined DEM product, which is utilized here. Both this and the CHM model (which has been 
mosaiced directly from GeoNova tiles) are native 1m resolution rasters in vertical meters.  
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2.1.2 Satellite Data 

 

 

  

Figure 15 shows province wide satellite mosaics built using GEE. Each data are compiled in using seasonal median 
across all scenes as described, and advanced cloud filtering is applied where appropriate. First are sentinel-2 RGB NIR 
products at a native 10 m including (S2P, top left) springtime, (S2S, top right) summer, (S2F mid-left) fall [NIR bands not 
shown]. Mid-right shows 20m native fall season Sentinel-MSI composite (S2F20, bands 5,6,7 shown). Bottom shows 
Sentinel-1 radar spring medians for Vertical-Vertical polarization (S1PVV, left) and Vertical-Horizontal (S1PVH, right).  
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Satellite data (indicated in the figure and table above) were processed with the considerations 
described in the previous section. This includes advanced cloud filtering, and median pixel 
calculation of all available scenes, per band, for each satellite. Cloud filtering was not required for 
Sentienl-1 radar data. Seasonal mosaics were computed by filtering collections by Julian day. 
Overall, satellite datasets are generated from Google Earth Engine where: 

Sentinel-2 Median Cloud-Filtered Composites spanning 2017-03-28 to 2023-12-08:  

Derived from Sentinel-2 imagery within the 'COPERNICUS/S2_SR_HARMONIZED' dataset in GEE, 
representing the median, cloud-filtered value using a cloud mask from 
'GOOGLE/CLOUD_SCORE_PLUS/V1/S2_HARMONIZED' with a threshold of 0.7. 

Where ‘spring’ includes data spanning March 1st to May 31st (Julian days 60-151) annually, 
‘summer’ includes June 1st to August 31st (Julian days 152-243), and ‘fall’ September 1st to 
November 30th (Julian days 244-334). Each seasonal mosaic include Sentinel-2 bands 2,3,4 and 8 
(R,G,B,NIR) at a native 10m resolution whereas only a fall mosaic was generated for Bands 5, 6, 7, 
8A, 11, 12 (Red-edge, SWIR etc) at a native 20m resolution.  

Sentinel-1 Median Composites spanning 2014-10-03 to 2023-12-08:  

Derived from Sentinel-1 imagery within the 'COPERNICUS/S1_GRD' dataset in GEE, representing 
the median ‘spring’ includes data spanning March 1st to May 31st (Julian days 60-151) annually, 
including both Vertical-Vertical (VV) and Vertical-Horizontal (VH) polarization image bands at a 
native 10m resolution.  

All satellite data are exported from GEE to be utilized in ArcGIS with the extent based on the GEE 
dataset 'FAO/GAUL_SIMPLIFIED_500m/2015/level1' to represent full coverage of Nova Scotia, 
expanded by a 10km buffer.  

 

2.1.3 Training/Validation Data 
Wetland identifying training points were provided by the Nova Scotia Department of Environment 
and Climate Change (NSECC). These data, totaling 2,041 data geographic points, constituted high-
quality expert derived wetland locations. These data were used for both training and validation of 
the classification model.  
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Table 3 shows the total count of training/validation data provided by NSECC. 

Wetland Category Count 
Bog 342 
Fen 218 

Marsh 196 
Salt Marsh 179 

Swamp 303 
Upland 630 

Water 173 
  

High quality training data such as this with a consistent source from an expert interpretation are 
critical to the success of such classification routines. That these data points are extensive and 
cover the entirety of the province, and span each of the Nova Scotia Ecoregions -  provides our 
model with the foundation for general applicability across the province in various ecological 
contexts when trained.  

2.1.4 Ancillary Data 
Published locations for wetlands in Nova Scotia were provided by the NSECC in the form of the 
official Nova Scotia Wetland Inventory. This data proved useful as an overall benchmark and 
spatial comparison to our results. Additionally, the wetlands identified in the Nova Scotia 
Ecological Land Classification (2017) proved to be a variable reference to compare against our 
results in a broad sense.  
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Figure 16 show the Nova Scotia Wetland Inventory consisting of 101,579 total wetland polygons which closely adheres to 
the Canadian wetland classification schema (NSE Wetlands). Wetland extents found in the finest ecological units of the 
Nova Scotia Ecological Classification of 2017, provide additional context and information which proved useful for a wider 
consideration of our results.   

2.2 OVERVIEW OF THE PROPOSED METHODOLOGY 
For our approach, we constructed 38 key wetland classification rasters chosen based on expert 
discussion and literature review. The overall process then relies on the AutoML tools found in the 
GeoAI suite of tools in ArcGIS 3.1.1. Utilizing the best available source for lidar ground and canopy 
elevations, as well as optical and radar satellite information, a complete provincial wide suite of 
image composites was constructed at 10 meter spatial resolution. The ‘Train Using AutoML’ 
ArcGIS tool is then used to compute a best ensemble classification model based on wetland 
classification points provided by NSECC. A segmentation method was then conducted on selected 
layers wherein a full prediction and classification was performed on each segment based on the 
average value of for each of the 38 layers.   
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Figure 17 shows the overall proposed wetland mapping procedure. Each of the input datasets were resampled to a 
consistent 10-meter resolution and formed a total of 38 generated feature layers. These layers then form the basis for 
training an ensemble classification model. The model is predicted on polygon features formed from segmenting a 
composite of layers highly sensitive to wetland delineation (TWI, CHROME, NDVI).  

2.3 DATA COLLECTION METHODS 
While there is a large list of elevation and satellite data types and sources, this project attempted 
to consolidate these to a minimum set for simplicity while also maintaining high quality and 
province wide applicability. As such this study relies heavily on the existing province wide lidar 
raster data, made available by GeoNOVA, and sources all satellite information from Google Earth 
Engine (GEE). While this access to GEE was conducted under a research license and therefore data 
is not directly shareable in all cases, this source was selected for rapid and high-quality generation 
of province wide seasonal cloud free mosaics.   

2.3.1 Lidar Data 
Lidar data, specifically Digital Elevation Model (DEM) and Canopy Height Model (CHM) tiles, were 
acquired from GeoNOVA for the years 2016 to 2020 at a spatial resolution of 1 meter. The lidar DEM 
is referenced to the Canadian standard vertical datum CGVD2013 whereas the CHM was 
referenced as relative height. Buildings and some artifacts such as tile and water boundaries were 
present in the CHM data and significant cleaning of these data were outside the scope of this 
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analysis. These tiles were then mosaiced together using ArcGIS to create comprehensive province-
wide datasets for each. Special attention was paid to ensure best available data was preferentially 
mosaiced into the final dataset.  

2.3.2 Satellite Data 
Seasonal mosaics of Nova Scotia were generated using Google Earth Engine’s Sentinel-2 collection 
for the years 2017 to 2023, employing the Cloud Score+ filter on harmonized imagery for cloud-
free, median pixel value composites: 

• Spring: March 1st to May 31st annually. 
• Summer: June 1st to August 31st annually. 
• Fall: September 1st to November 30th annually. 
• Winter: December 1st to February 28th/29th annually. 

This process was applied to all 10m resolution bands of Sentinel-2. Additionally, a separate mosaic 
for the fall season was created for all 20m resolution bands, ensuring comprehensive coverage and 
detail of the landscape across all available spectral bands for each season. These data consist of 
16-bit top of atmosphere reflectance values. Additional information including a total list of 
Sentinel-2 bands is available in the references (Google Developers, 2024). Sentinel-2 data was the 
basis for additional computed metrics as described including NARI, REIP, and NDVI. Additionally, 
each Sentienl-2 band for each mosaic is included directly in the analysis.  

Sentinel-1 data was also acquired in a similar manner (as the median 10 m pixel) for the described 
spring timeframe and otherwise covering the entire timespan. Two radar polarization options were 
included, vertical-vertical (VV), and cross-polarized vertical-horizontal (VH), which each provide a 
differing noise and reflectance profile. While C-band radar such as Sentinel-1 is generally not 
sensitive to clouds, reflectance can be heavily impacted by incident angle such as terrain angle. To 
attempt to compensate these effects, a normalized difference was also computed between VV and 
VH.  

2.4 DATA ANALYSIS PROCEDURES 

2.4.1 Compilation of desired Feature Layers 
A series of Python scripts were constructed to generate each of the desired rasters, selected from 
the list of desirable features for wetland mapping. Each layer was resampled to 10 meters using 
bilinear or nearest neighbor as appropriate. A complete list of the included layers is as follows and 
form the inputs features or ‘explanatory raster’ information for later machine learning classification 
steps: 

Table 4 complete list of feature layers which are directly resampled or computed from input datasets. A full description 
for each can be found in the previous section. Details for the computation can be found in the accompanying python 
script.  

Number ID Name Full Name 

1 DEM Digital Elevation Model 
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2 CHM  Canopy Height Model 

3 SLOPE Lidar Derived Terrain Slope 

4  CHROME Chrome DEM (Custom Metric) 

5  DEV150 Deviation of Mean Elevation (150 meter) 

6 DEV500 Deviation of Mean Elevation (500 meter) 

7 DEV1000 Deviation of Mean Elevation (1000 meter) 

8 FILLD Hydrological Sinks, Filled Depth 

9 TWI Topographic Wetness Index 

10 LAND Geomorphon Land Cover Index 

11 GEOM Geomorphon Scalar Value  

12 FILLD Hydrological Sinks, Filled Depth 

13 S1PVV Sentinel-1 Spring Vertical-Vertical Polarization 

14 S1PVH Sentinel-1 Spring Vertical-Horizontal Polarization 

15 S1PND Sentinel-1 Spring VV/VH Normalized Difference 

16 S2P2 Sentinel-2 Spring, Band 2 (Blue) 

17 S2P3 Sentinel-2 Spring, Band 3 (Green) 

18 S2P4 Sentinel-2 Spring, Band 4 (Red) 

19 S2P8 Sentinel-2 Spring, Band 8 (NIR) 

20 S2S2 Sentinel-2 Summer, Band 2 (Blue) 

21 S2S3 Sentinel-2 Summer, Band 3 (Green) 

22 S2S4 Sentinel-2 Summer, Band 4 (Red) 

23 S2S8 Sentinel-2 Summer, Band 8 (NIR) 

24 S2F2 Sentinel-2 Fall, Band 2 (Blue) 

25 S2F3 Sentinel-2 Fall, Band 3 (Green) 

26 S2F4 Sentinel-2 Fall, Band 4 (Red) 

27 S2F8 Sentinel-2 Fall, Band 8 (NIR) 

28 S2PNDVI Sentinel-2 Spring, NDVI Composite 

29 S2SNDVI Sentinel-2 Summer, NDVI Composite 

30 S2FNDVI Sentinel-2 Fall, NDVI Composite 

31 S2F5 Sentinel-2 Fall, Band 5 

32 S2F6 Sentinel-2 Fall, Band 6 

33 S2F7 Sentinel-2 Fall, Band 7 

34 S2F8A Sentinel-2 Fall, Band 8A 

35 S2F11 Sentinel-2 Fall, Band 11 

36 S2F12 Sentinel-2 Fall, Band 12 

37  NARI Normalized Anthocyanin Reflectance Index 

38 REIP Red Edge Inflection Point 
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Figure 18 shows a graphical summary of all included explanatory rasters used for the wetland classification model. All 
rasters are derived lidar or satellite seasonal mosaics generated using google earth engine (GEE). Depth to water (DTW) 
was provided by NSECC at a native 5m resolution and resampled 10 m to be consistent with all other raster layers.   

2.4.2 Training AutoML ensemble Model 
Using the ArcGIS GeoAI Train Using AutoML tool, we extract point values for each of the training 
data points provided by NSECC for all explanatory features. A random sample of 10% of the 
provided wetland identification points were withheld from the training to validate the model, which 
is the default validation percentage for the AutoML tool. This validation step is critical for assessing 
the model's accuracy and generalizability to unseen data. The performance of each classifier is 
tested using a standard Log loss function which tests both accuracy and confidence. The resulting 
model forms the best ensemble classifier based on a suite of attempted classification routines. 
Higher performing classifiers are weighted into the final ensemble classification model including 
LightGBM, CatBoost, and Linear classifiers.  

Table 5 shows the total scope of models utilized by the AutoML classifier in ArcGIS pro. Top performing classifiers are 
used to generate a single Ensemble model 

 
Model name Model type Metric type Metric 

value 
Training 
time 
(Seconds)  

1_DecisionTree Decision Tree logloss 1.23063 0.64  
2_DecisionTree Decision Tree logloss 0.991596 0.65  
3_DecisionTree Decision Tree logloss 0.991596 0.66  
4_Linear Linear logloss 0.325585 0.91  
5_Default_LightGBM LightGBM logloss 0.276918 3.61  
6_Default_Xgboost Xgboost logloss 0.24405 4.68  
7_Default_CatBoost CatBoost logloss 0.207643 31.53 
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10_Xgboost Xgboost logloss 0.217611 4.11  
11_Xgboost Xgboost logloss 0.247786 4.26  
12_LightGBM LightGBM logloss 0.274184 2.15  
15_Xgboost Xgboost logloss 0.225407 5.83 

the best Ensemble Ensemble logloss 0.195354 0.25 
 

The AutoML tool in ArcGIS provides 
several valuable analysis outputs to 
gauge the performance of the 
classification. Especially valuable are the 
Log Loss over each iteration, and the 
resulting Receiver Operating 
Characteristic (ROC) and precision-recall 
curves of the ensemble model.  

 

Figure 19 shows the calculated log loss (accuracy 
and confidence) improve for the ensemble model 
as the classifier trains iteratively. 

 

Figure 20 shows the Receiver Operating Characteristic (ROC) Curve which indicates the model's ability to differentiate 
between classes vs random, while the Precision-Recall Curve indicates % correct of the class (precision) and % of the 
class correct (recall) 
The AutoML tool generates a DLPK (deep learning model package file) which can then be utilized 
with several ArcGIS tools to generate an output prediction of each wetland type for a given set of 
explanatory inputs.  Note that all explanatory values used in training the model are required to 
generate a prediction.  

2.4.3 Raster Segmentation 
To apply the model across the province, the region was segmented into detailed vector polygons to 
provide the basis wetland prediction. This was accomplished using the  ArcGIS Segment Mean Shift 
tool. To provide a good balance between processing time and the ability to discriminate wetlands 
finely, segmentation was performed on a 10 m resampling. The tool can accept a 3-band raster 
input so a composite of Chrome, NDVI, and TWI was selected as it was visually assessed across 
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the province to best differentiate between various features as indicated by the existing Nova Scotia 
wetland Inventory.  

  

Figure 21 shows the resulting segmentation as performed on the 10 m chrome, NDVI, and topographic wetness index 
feature rasters. 

In total this process generated 10,101,784 discrete segments. These segments were then attributed 
with average values for each of the indicated explanatory rasters using the ArcGIS tool Compute 
Segment Attributes. Finally, a polygon feature class of all segments was generated using the 
Raster To Polygon tool and features for all explanatory rasters were added using the Join tool.  

2.4.4 Predict Model to Segments 
Once a single segment feature class covering the entire province including all and explanatory 
values was generated, the Predict Using AutoML was run in a batch script. This process was 
performed iteratively to ensure stability and to track progress.  

 

Figure 22 our method poduces classified segments, where each segment has been assigned the average raster value for 
each of the 38 input layers. 
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2.4.5 Methods Overview 
The final set of wetland prediction results were then merged into a single wetland prediction 
feature class. At this point, data can be inspected, mapped, summarized, and disseminated. These 
data have been selected for wetland features (marsh, bog, fen, saltmarsh, swamp) and stripped of 
non-wetland features (uplands, water) to reduce the file size.  

 

Figure 23 shows the general graphical overview of the process. The main inputs are used to derive a total of 38 
explanatory variables. 3 of these (CHROME, TWI, NDVI) are used to perform a province wide segmentation, producing 10 
million + segments. These segments are assigned the average of the 38 layer values which are then used to predict the 
wetland classification type based on an appropriately trained model. The model presented was trained using 2000+ 
wetland type identifications points provided by NSECC, which were sampled to the same 38 input layers and trained 
using AutoML ADVANCED mode in ArcGIS. The prediction applied to the segments in performed in batches.  

3 RESULTS 
Utilizing the training data points, provided by NSECC, and the AutoML classifier tool available in 
ArcGIS GeoAI tools, we were able to generate a wetland prediction for 10,101,784 discrete 
segments with a combined estimated accuracy of approximately 94.1%. This combined area of 
62,228 sq km covers the entire land area of Nova Scotia. This analysis is performed with an 
approximate spatial resolution of 10 m.  

Of the total segments classified, approximately 61% of the area was determined ‘Upland’ (non-
wetland), 15% water, and the remaining 24% as wetland. Of the total wetland area, swamps 
formed the vast majority at 87.9% (20.5% of the total province), followed distantly by Bogs (at 6.5% 
of wetlands, 1.2% of the province). The remaining Fens, Marshes, and Salt Marshes constitute less 
than 2% of the province collectively.  
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Table 6 shows the total segments modelled across the province, including their total area per classification 

Type  Segments   Area (Sq. Km)  Area (%) 
Bog                     144,160                     723.94  1.16% 
Fen                     140,713                     666.87  1.07% 
Marsh                        29,404                     114.24  0.18% 
Salt Marsh                        53,799                     231.86  0.37% 
Swamp                 3,118,780             12,767.99  20.52% 
Upland                 5,820,115             38,156.96  61.32% 
Water                     794,813                9,566.54  15.37% 
Total              10,101,784             62,228.40  100.00% 

 

Table 7 shows the total number of segments province wide which are considered wetlands. 

Type  Segments   Area (Sq. Km)  Area (%) 
Bog            42,797             321.10  2.46% 
Fen         136,895             842.13  6.44% 
Marsh            32,024             175.39  1.34% 
Salt Marsh            46,025             244.18  1.87% 
Swamp    2,151,865     11,494.33  87.90% 
Total    2,409,606     13,077.15  100.00% 

 

 

Figure 24 shows the overall results of the AutoML prediction applied to each of the ~10 million segments across the 
province. 
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Figure 25 shows one of various views by which the results have been inspected. Each segment, having been assigned a 
wetland classification through the prediction of our model – is overlain with the best available known wetland locations 
for Nova Scotia, namely, the wetland inventory (NSE Wetlands) and the ecological land classification wetlands (NS ELC 
Wetlands). Further we inspect the in context of the overlay with various predictor values including the high prediction 
importance CHROME value, here shows as the average CHROME value per segment, sampled from the 10m raster 
source.  

3.1 DETAILED ANALYSIS 
While the overall accuracy of the model, based on 10% validation of the total 2,041 total training 
points reported ~ 94% overall accuracy, the mean prediction confidence across all 10,101,784 
segments tells a slightly different story, yielding a total mean Prediction confidence of 89.3% with a 
standard deviation of 13.9%.  This represents an improvement over previous model runs which 
achieved an overall average prediction confidence across all segments of 85.8% (std. 16.0%). This 
previous model run did not include critical feature layers such as NARI, REIP, CHM, DEV, or DTW – 
indicating their overall value to the results. 
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Table 8 shows the Mean confidence % per category (and standard deviation) across all 10.1 million segments. Square 
bracket values indicate the mean percent confidence of previous model runs which did not include NARI, REIP, CHM, 
DEV, or DTW feature layers.  

Category Mean Prediction 
Confidence (%)  

Standard Deviation 
(%)  

Bog 77.9 [59.4] 18.0 

Fen 72.7 [60.6] 18.6 

Marsh 66.4 [63.4] 19.4 

Salt Marsh 72.5 [70.1] 17.6 

Swamp 88.0 [85.0] 14.9 

Upland 90.8 [85.9] 12.1 

Water 91.8 [95.3] 14.3 
 

What this likely indicates is that, while the classifier produces highly accurate and validated 
prediction on all the expert selected wetland locations for a given set of explanatory pixel values, it 
becomes less confident when faced with the overall distribution of all explanatory pixel averaged 
into segments. This suggests that the model, while accurate by all accounts, could either be made 
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more robust by training on segment data as opposed to directly on point samples, or by refining 
segments to be more precise. The latter will likely improve the model on all accounts.  

 

Figure 26 shows the prediction results around the Kentville/Minas Basin area. Locally we see a greater abundance of salt 
marshes predicted with is in line with the attributes of the Nova Scotia wetland inventory (NSE). We see some agricultural 
land being depicted as slat marsh as well which may have implications for agricultural monitoring though further 
investigation as such is outside of the scope of this report. Note that while the delineation of fens (green) and bogs (red) 
do conform well to the NSE wetlands, swamps present a systematic increase. This increase is generally tied to tree 
covered areas – though the accuracy of this in real world terms generally unknown.  
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Figure 27 shows the south of Nova Scotia, south lake Rossignol. This area of our results presents largest concentration of 
predicted wetlands (generally swamps) which deviate from the coverage presented in the existing Nova Scotia wetlands 
Inventory (NSE wetlands). This discrepancy is notably less substantial when considering the wetland coverage presented 
by the ecological land classification wetland ecosites (NS ELC wetlands). Further inspection details that this discrepancy 
maybe accounted for in part by previous works inability to detect features below the forest canopy. This overall result is 
yet not scrutinized by any field validation.   
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Figure 28 shows a portion of southwestern Nova Scotia in the Weymouth area. Here we see a vast distribution of 
predicted swamps (purple) which are not included in the existing Nova Scotia wetland inventory or ecological land 
classification wetland polygons (hatched polygons). These swamps to conform to low laying features are glacial drumlins 
are clearly visible across the area showing notably less wetlands present.  
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Figure 29 shows the northern shore and isthmus area of Nova Scotia. We see a vast increase in the overall predicted 
presence of swamp type wetlands (purple) vs existing wetland maps (hatched lines). Note that our model predicts salt 
marshes in agricultural areas – though generally seems to perform across varied tide ranges. The prevalence of predicted 
swamp wetlands does decrease with geological and elevation change visible to the south of the map where the Cobequid 
mountains are visibly less dense with swamps.  
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Figure 30 shows the Halifax regional municipality and area. Here we can see some success in detecting key wetland 
areas bounding various rivers and lakes, whereas urbanized locations such as the Halifax peninsula shows little existing 
wetland areas. Our prediction suggests much of the region includes small low laying swamp type wetlands which may not 
presently be present in the Nova Scotia wetlands inventory. These results have not been independently verified.   
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Figure 31 shows the eastern shore area of Nova Scotia. As with other area, our model agrees strongly with bog type 
wetlands when considering the Nova Scotia wetland inventory of the ecological land classification wetland polygons. We 
systematically do predict a wider distribution of swamp type wetlands (purple) in low laying areas. 
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Figure 32 shows the southern portion of Cape Breton.  Comparing our results to the existing wetland inventory and 
ecological land classification wetland polygons, we see generally a strong agreement with bog type wetlands (red). As 
with much of our results, a generally greater coverage of swamp type wetlands has been predicted (purple).  
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Figure 33 shows the Cape Breton highlands and region. Here we see that our model does predict significant areas of new 
swamps (purple) generally bound to river flood plane areas. In the highlands themselves however, we do see systematic 
underprediction of  bogs. This discrepancy appears unique to this region based on inspecting our results across the 
province.  

On visual analysis, segmentation using the “Chrome”, NDVI, and topographic wetness index (TWI) 
indicates that the segmentation is performing better than similar attempts. The Chrome layer 
specifically does a reasonably good job of segmenting wetlands from non-wetlands, whereas the 
NDVI and TWI assist in differentiating subtle changes within a given wetland, allowing the classifier 
to assess each segmented section individually.  

In terms of the internal validation of the model, based on the 10% withheld training data, the model 
performs highly accurately. With a weighted average total accuracy of 94%.  
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Figure 34 shows the normalized confusion matrix of the wetland prediction model trained with ArcGIS AutoML on 2,041 
training points with 10% withheld for validation. 

4 DISCUSSION 
This project provides a detailed methodology for significant improvement for identifying wetland 
areas in Nova Scotia compared to the existing Nova Scotia Wetland Inventory. A similar 
methodology that was tested using only Google Earth Engine (GEE) by NSECC also indicated 
significant improvements in wetland identification based on expert opinion at NSECC. That being 
said – success in both frameworks (GEE and ArcGIS, used here) are contingent on good feature 
layers and well-placed training data as well as validation including perhaps new ground truthing.  

In either case, accurate wetland mapping in Nova Scotia is founded upon use of the high-resolution 
lidar inventory coupled with best available satellite data. With respect to lidar, we are lucky to have 
a remarkable province-wide lidar inventory of a very high quality. This enables much of the analysis 
to be conducted at minimal expense. Based on experimentation and previous studies, lidar plays a 
critical role in accurate wetland mapping. It may even be reasonable to use lidar only methods for 
wetland detection to compare results against methods such as the approach described in this 
project, which incorporates satellite information. In the satellite case, we utilize the best available 
data from Sentinel-2 provided by Google Earth Engine (GEE), which make use of their cutting-edge 
cloud filtering methods. While the European Space Agency produced Sentinel-2 produces freely, 
value added delivery methods, such as the seasonal composites and cloud masking, make 
proprietary systems such as GEE a valuable option for accessing such data. Though these analyses 
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are typically free for research and educational use, there is a cost when deploying these systems 
for other uses and these costs should be considered when further exploring the methods described 
in this report.  

It should be clearly noted that while this workflow been otherwise completed in ArcGIS, with 
satellite data provided from GEE – there are a series of alternative avenue to complete such 
analysis which may be considered including the free python tools available with scikit-learn for 
machine learning tools, and raster or vector processing with rasterio and GDAL. Many of the 
machine learning techniques utilized by ArcGIS in the AutoML tool, such as XGBOOST, are 
available as free and readily deployable tools though python libraries directly.   

4.1 INTERPRETATION OF RESULTS 
Visual inspection of the output indicates that the methodology generally performs well at 
identifying wetlands in the province. Specifically, we observe better than expected predictions of 
saltmarshes along the coast. In earlier iterations of the model, the water class had the lowest 
reported single metric for accuracy in validation (0.76% recall) while it has visually performed very 
well – that is to say that water classifications conform well to lake and coast boundaries. This is to 
be expected with the inclusion of several high quality NDVI raster values averaged across the 
segments. In total, this should present a very strong signal to represent water per segment. Water 
however, when sampled as points for the model training, may validate less capably due to local 
variations such as glint and other artifacts. This should be a consideration for future training of 
similar models.  

On the other hand, the observed deviation between the validation accuracy on points (94%) and 
variation of predicted confidence of segments (85.8 %, +/- 16%) can likely be attributed to an 
increased variance across the total set of segments. That is to say, unlike water polygons, other 
land segments shows more variation within them. This lower prediction confidence, if the model 
truly is performing well based on training points, could suggest that the segments may benefit from 
further segmentation or refinement. Perhaps, for example, a workflow could be developed to divide 
low prediction confidence segments into sub-segments programmatically.  

Now that this functional workflow has been established, further analysis would likely include 
providing additional training data and refining the segmentation techniques based on more expert 
validation and inspection. It is particularly concerning given that key categories with relatively low 
representation (Bogs, Marshes, and Salt Marshes) show relatively low proportion of prediction 
confidence, suggesting that the segmentation used specifically may not adequately differentiate 
between neighboring wetland categories. Alternative segmentation techniques can be found in the 
scikit-image python library for example.  

This segmentation issue can also be addressed by re-assigning the function of the Predict Using 
AutoML tool from predicting features (segments) to a raster output. This functionality was not 
successful during this project but is a sensible future direction, though it would also require all 
explanatory input to be in a raster format. This methodology may come at the expense of spatial 
resolution as some input data (REIP, NARI) are 20 m native resolution 
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Eco district Bog Fen Marsh 
Salt 
Marsh Swamp Upland Water 

Predicted 
Wetland 

Reported 
Wetland Delta 

Average 1.3% 1.0% 0.0% 1.0% 19.5% 67.4% 8.1% 23.0% 7.3% 15.7% 

100 10.7% 0.8% 0.0% 0.0% 9.0% 76.0% 3.5% 20.5% 33.1% -12.6% 

210 2.1% 0.2% 0.0% 0.0% 9.2% 86.8% 1.8% 11.4% 12.6% -1.2% 

220 0.1% 0.1% 0.0% 0.7% 10.6% 72.2% 16.3% 11.5% 3.3% 8.2% 

310 0.3% 0.1% 0.0% 0.0% 6.4% 92.4% 0.7% 6.9% 1.9% 5.0% 

320 0.4% 0.5% 0.4% 0.9% 20.5% 62.6% 14.7% 22.7% 6.4% 16.3% 

330 0.1% 0.2% 0.0% 0.0% 13.5% 85.5% 0.7% 13.9% 2.8% 11.1% 

340 0.1% 0.2% 0.0% 0.0% 10.5% 88.5% 0.7% 10.8% 1.9% 8.9% 

350 0.1% 0.1% 0.1% 0.0% 11.7% 87.4% 0.6% 12.0% 1.7% 10.3% 

360 0.9% 0.8% 0.0% 0.0% 21.6% 71.5% 5.1% 23.3% 5.9% 17.4% 

370 1.0% 0.8% 0.2% 0.0% 22.3% 71.0% 4.6% 24.4% 7.8% 16.6% 

380 0.8% 0.4% 0.0% 0.0% 18.1% 79.8% 1.0% 19.3% 4.3% 15.0% 

410 0.2% 0.2% 0.1% 0.0% 12.7% 86.4% 0.5% 13.1% 1.1% 12.0% 

430 0.4% 0.6% 0.0% 0.0% 10.1% 77.4% 11.4% 11.2% 5.0% 6.2% 

440 2.7% 1.3% 0.1% 0.0% 21.4% 66.3% 8.1% 25.6% 8.7% 16.9% 

450 2.1% 0.9% 0.0% 0.0% 23.0% 67.8% 6.1% 26.1% 7.4% 18.7% 

510 1.4% 0.7% 0.2% 0.4% 23.8% 64.4% 9.1% 26.5% 8.8% 17.7% 

520 0.1% 0.3% 0.4% 0.6% 16.4% 80.0% 2.2% 17.8% 3.0% 14.8% 

530 0.4% 1.0% 0.6% 1.0% 33.8% 59.1% 4.2% 36.7% 5.5% 31.2% 

540 0.2% 0.5% 0.4% 0.0% 18.9% 79.4% 0.6% 20.0% 3.3% 16.7% 

550 4.3% 3.6% 0.4% 22.2% 20.5% 38.0% 11.0% 51.0% 27.9% 23.1% 

560 1.1% 1.2% 0.2% 0.2% 31.6% 64.6% 1.1% 34.3% 8.4% 25.9% 

610 0.1% 0.6% 1.4% 1.7% 21.5% 72.3% 2.4% 25.3% 4.8% 20.5% 

620 0.1% 0.7% 1.2% 1.6% 21.5% 60.7% 14.1% 25.1% 7.3% 17.8% 

630 0.6% 1.1% 1.3% 0.4% 25.4% 69.2% 2.0% 28.9% 6.2% 22.7% 

710 0.0% 0.4% 0.0% 0.1% 11.9% 86.9% 0.6% 12.5% 1.4% 11.1% 

720 0.9% 1.5% 0.0% 0.0% 28.4% 61.4% 7.8% 30.8% 6.1% 24.7% 

730 0.6% 1.9% 0.3% 0.3% 32.6% 53.2% 11.1% 35.7% 5.6% 30.1% 

740 0.4% 1.3% 0.1% 0.0% 28.9% 59.1% 10.2% 30.8% 4.5% 26.3% 

750 0.5% 1.3% 0.0% 0.0% 16.2% 17.1% 7.8% 18.0% 6.1% 11.9% 

760 3.3% 4.5% 0.0% 0.0% 46.7% 39.5% 6.0% 54.5% 14.7% 39.8% 

770 1.5% 2.9% 0.0% 0.0% 40.4% 49.8% 5.4% 44.8% 8.6% 36.2% 

780 0.4% 1.0% 0.0% 0.0% 18.2% 72.5% 7.8% 19.7% 4.1% 15.6% 

810 4.3% 0.8% 0.1% 0.4% 19.4% 63.9% 11.1% 25.0% 14.6% 10.4% 

820 4.6% 0.8% 0.0% 0.4% 16.0% 70.3% 7.8% 21.9% 9.4% 12.5% 

830 2.5% 3.3% 0.1% 1.4% 34.6% 53.5% 4.6% 41.9% 15.9% 26.0% 

840 0.8% 2.3% 0.3% 6.2% 32.7% 48.5% 9.2% 42.3% 16.3% 26.0% 

850 0.0% 0.2% 0.0% 0.6% 0.2% 86.6% 12.4% 1.0% 0.0% 1.0% 

910 0.5% 0.4% 0.5% 0.6% 9.5% 87.9% 0.7% 11.4% 3.6% 7.8% 

920 0.0% 0.4% 0.1% 0.1% 10.8% 86.7% 2.0% 11.3% 1.6% 9.7% 

NONE 0.0% 0.0% 0.0% 0.4% 0.1% 1.3% 98.1% 0.6% 0.0% 0.6% 

The above table indicates the total area percentage of each wetland designation predicted based on our 
methods broken down per Ecodistrict as determined by the NS ELC (see figure below). Each total wetland 
areas is further compared with the wetland percent reported by the ELC (Neily et al. 2017) 
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Figure 35 shows the numerical Ecodistricts as depicted in the Nova Scotia ecological land classification (ELC). Also 
indicated are the wetland areas designated in that analysis (Neily et al. 2017). 

 

Figure 36 highlights the deviation between, A1; the coarse wetland mapping product presents in the NS ELC (Neily and 
2017), A2; all wetland types as depicted by the by existing wetland inventory, and A3; Our results. As shown in the above 
table, the cape Breton highland is the only Ecodistrict where we detect an overall lower abundance of wetlands. This is 
likely due to the unique characteristics of the highlands which are not adequately captured in the model. Perhaps 
additional training or values may help correct this perceived discrepancy.  

A 

B 

A1 A2 A3 
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Figure 37 shows Ecodistrict 760 (Sable), directly to the south of Lake Rossignol, NS. This area presents the largest 
systematic discrepancy in terms of our greater abundance of swamp type wetlands. Considering all wetlands, we see 
that the wetland extents presented in the NS ELC (B1) are in support of our results (B3) in that there are similarly more 
overall wetlands depicted than currently in the Nova Scotia wetland Inventory (B2). 

 

Figure 38 shows the same area Ecodistrict 760 (Sable) south of Lake Rossignol. Here our results are filtered to segments 
where the mean canopy height value (CHM) is less than 1.5 meters. This indicates wetlands which do not have significant 
vegetation. Note that with this restriction, our then results (black) are more in line with what is presented by the current 
Nova Scotia wetland Inventory in terms of all wetland types (red).  

 

B1 B2 B3 

B4 
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4.1.1 Implications of Forest Canopy  
By restricting our predicted results to segments where the canopy height average is less than some 
threshold, we can see our results are more in line with the existing Nova Scotia wetland inventory. 
This is indicated in the figure above.  

Table 9 shows area and percent area of different wetland types using different CHM thresholds. 
 

All segments Segments where CHM < 1.5 m Segments where CHM < 4.0 m 

type  Area (Sq. Km)  Area (%) Area (Sq. Km)  Area (%) Area (Sq. Km)  Area (%) 

Bog                    723.94  1.16% 622.40  1.00% 718.32  1.15% 

Fen                    666.87  1.07% 445.54  0.72% 617.92  0.99% 

Marsh                    114.24  0.18% 84.34  0.14% 108.78  0.17% 

Salt 
Marsh 

                   231.86  0.37% 208.50  0.34% 227.15  0.37% 

Swamp            12,767.99  20.52% 261.51  0.42% 2,784.90  4.48% 

Upland            38,156.96  61.32%  total  2.61%  total  7.16% 

Water               9,566.54  15.37% 
    

Total            62,228.40  
     

 

As indicated by the table above, when restricting our predicted wetlands to segments where the 
canopy height (average) is less than 4.0m, we see an overall percentage land cover of wetlands of 
7.16% whereas the current Nova Scotia wetland inventory indicates 6.8% wetland cover.  

4.2 COMPARISON OF ARCGIS TOOLS 
Several inconsistencies and issues in the ArcGIS workflow resulted in many stumbling blocks 
throughout this project.  

After using the Train Using AutoML tool on a suite of explanatory rasters, one would expect to then 
generate an output prediction raster using the accompanying Predict Using AutoML tool directly on 
the same set of rasters. However, at the time of writing this report, this workflow was not well 
documented and did not appear to function as expected. It was noted, however, that running the 
Predict Using AutoML tool using a set of features attributed with the same set of explanatory 
rasters would work as expected.  

When issues were encountered with the standard ArcGIS workflow to predict raster outputs from 
the trained model, an alternative method was discovered which ultimately resulted in a more 
robust workflow. Using segmentation from a separate set of rasters to generate features, which 
were attributed with the full list of explanatory rasters, has the advantage of decoupling the 
polygonal boundary of the wetlands from the full list of feature rasters. In effect, this means that 
the resolution of the resulting wetland layer can be determined by high resolution layers such as 
the lidar elevation model (1m) while still incorporating low resolution data (such as REIP, derived 
from 20m sentinel-2 data, as mentioned).  

Additionally, significant time was allotted to debugging alternative random forest tools in ArcGIS. 
Specifically, a significant amount of time was spent attempting to get the Forest Based 
Classification and Regression tool (FBCR) to report reasonable validation results. Despite best 
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efforts, and with the same training data as utilized for the AutoML results of this report, an accuracy 
of only ~42% was observed.  This is despite no small effort to normalize the feature layers, training 
distribution, and even to exclude classes. To test the tools results, it was compared against the 
industry standard python forest-based classifier XGBOOST in a pure python environment. When 
this tool successfully yielded the expected ~92% accuracy, the FBCR tool was determined to be 
the issue and development focused on alternatives, ultimately settling on the AutoML approach.     

Below illustrates the variance in achieved accuracy/validation using ArcGIS FBCR and python 
XGBOOST on the same training data: 

Table 10 Python 3.10.12 xgBoost version 2.0.3 class codes listed as ID numbers (but perform generally well) 

Category F1-Score MCC Sensitivity Accuracy 

Bog 0.89 0.87 0.93 0.97 

Fen 0.93 0.91 0.96 0.97 

Marsh 0.85 0.83 0.78 0.97 

Salt Marsh 0.96 0.96 0.95 0.99 

Swamp 0.93 0.91 0.94 0.96 

Upland 0.91 0.90 0.83 0.98 

Water 0.96 0.96 1.00 0.99 

 

Table 11 ArcGIS v 3.1.1, Forest Based Classification & Regression Tool, very poor performance across multiple classes. 

Category F1-Score MCC Sensitivity Accuracy 

Bog 0.29 0.36 0.18 0.86 

Fen 0.29 0.25 0.94 0.51 

Marsh 0.11 0.14 0.06 0.90 

Salt Marsh 0.62 0.61 0.50 0.95 

Swamp 0.41 0.43 0.27 0.88 

Upland 0.71 0.67 0.57 0.86 

Water 0.76 0.74 0.75 0.96 

 

While the ArcGIS processing issues described above do continue to be major stumbling blocks, it 
should be reiterated that this work was conducted using ArcGIS Pro version 3.1.1, which may now 
be updated to version 3.3. There is, however, no mention of specific fixes to the relevant tools 
found mentioned in the release notes for either version 3.3 or 3.2. Interestingly, new features added 
to the Forest Based Classification and regression suggesting this tool has continued support 
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despite its poor classification performance noted above. Perhaps critically though, ArcGIS version 
3.3 does include an update from python version 3.9.18 (to 3.11.8) which may have substantial 
impact on the performance and stability of various arcpy tools. Additionally, version 3.3 includes 
modifications to the geoprocessing framework including new techniques for data caching.  
Ultimately, a workflow wherein the input rasters may be used in the training and prediction steps 
reliably and in memory would facilitate a much simpler and lightweight approach. Ideally this 
updated approach may include a viable option to predict directly to a raster using the Predict Using 
AutoML tool. This would allow for more flexibility considering complications related to raster 
segments which we are relying on currently.  

4.3 FEATURE LAYERS  
While not adequately covered 
in this report, a typical benefit 
of most forest-based 
classifiers is the inherent 
quantization of the 
importance of input feature 
layers. In general, this is good 
practice to report which layers 
had the highest utility in the 
model such that others can 
prioritize similar efforts 
accordingly.  

Figure 39 Python 3.10.12 xgBoost 
version 2.0.3 feature importance.  

As an aspect of the ensemble 
model process of AutoML, the 
final prioritisation of all input 
feature layers has not yet been 
discovered, though earlier 
iterations of the process (i.e., 
when predicting a ‘basic’ level 

model) do provide information on relative feature importance. For the purposes of demonstrating 
the approximate level of importance for features used in this report, we have included a figure 
demonstrating the relative importance computed with XGBOOST. Note that the highest performing 
layers include the DEM, NARI, CHM, and DEV1000(m), and REIP.  

4.3.1 Relative variable importance 
The AutoML tool in ArcGIS has a particular limitation with regard to reporting the relative variable 
importance, specifically when utilizing the ADVANCED training mode. As such, it is yet possible to 
ascertain the relative variable importance only when performing the BASIC training. While this does 
not exactly relate to the specific model and results we achieved using the ADVANCED mode, this 
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does provide good insight into the general utility of each input layer. From conducting a BASIC 
model training with the same training and input 
data as our ADVANCED model, we can infer that 
the DEM was the most relevant input layer and 
was specifically important in detecting marsh 
and salt marsh type features. Second, the spring 
near infrared layer was identified as most 
valuable for differentiating water features. The 
Anthocyanin sensitive index (NARI) proved 
useful across all classes, specifically uplands 
and fens. Various lidar metrics including our 
novel CHROME index, the provided depth to 
water layer (DTW), and the computed 
topographic water index (TWI), appeared most 
useful in detecting uplands, bogs, and fens 
respectively – although all were generally highly 
useful. Notably, NDVI and canopy height (CHM) 
performed well in determining swamp features. 
Additional input variables provided varied and 
diminishing utility in the prediction. The SHAP 
score importance for the synonymous BASIC 
model of the top performing input layers is 
presented to the right:  

 

 

4.4 IMPLICATIONS FOR FLOOD MITIGATION AND ECOSYSTEM SERVICES 
This report provides a framework for a method to generate wetland classification polygons using 
ArcGIS.  The results showed that the current Nova Scotia wetland inventory is underrepresenting 
both the number and total area of wetlands throughout Nova Scotia significantly, especially 
swamps. This finding presents both an opportunity and a challenge, as wetlands have an important 
role in reducing the risk of climate hazards, such as flooding and ecosystem impacts, but also 
require special management efforts.  

  

Figure 40 shows the SHAP feature importance score for 
the AutoML BASIC model, which was run with the same 
inputs as the ADVANCED model used to generate out 
results. 
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5 RECOMMENDATIONS 

5.1 STRATEGIC RECOMMENDATIONS FOR WETLAND MANAGEMENT 
This report has been conducted with technical advice/assistance provided by NSECC. Remote 
sensing-based methods rely heavily on the high-resolution lidar data provided by the province as 
well as satellite data, including Sentinel-2. A provincial priority should be placed on continuing and 
initiating acquisition of such data to monitor changes into the future including both lidar, aerial 
photography, and high-resolution satellite data. None such high-quality analysis can be performed 
regardless of platform or technique in the absence of adequate, up to date remote sensing data.  

In terms of strategic directions, a valuable next step to any wetland predictive model would be to 
incorporate additional explanatory variables directly tied to climate, such as rainfall, heat stress, or 
sea-level. With the inclusion of these layers, predictive models can be adjusted to match future 
climatic scenarios and extrapolate possible effects to wetland distribution directly. The inventory 
and approach generated by this project may be useful for tracking change in wetland extent over 
time due to stressors such as urbanization and climate change. 

Moreover, integrating land use data with predicted wetland distributions can identify potential 
restoration sites and improve model accuracy. Assessing the functional importance of wetlands, 
such as their roles in flood regulation near urban centers and carbon sequestration, will provide 
valuable insights for management. Incorporating these elements will enhance conservation 
strategies and align with broader environmental goals. 

5.2 SUGGESTIONS FOR METHODOLOGY REFINEMENT 
This model as described would benefit from refinement to the segmentation methodology. In 
general, an overall comparison between this method based in ArcGIS and those conducted using 
Google Earth Engine could yield a single best approach which could be adopted by the province. 
Results from this or other similar modelled outputs depicting wetland distribution would benefit 
from a significant level of field validation. This could be conducted semi-efficiently with the aid of 
low altitude UAS/drone equipped with multi-spectral imaging sensors. The Applied Geomatics 
Research Group has such equipment available for use in future iterations of this project.  

It is important to emphasize that this workflow is the result of various compromises due to 
limitations encountered during its development. For instance, segmentation of the input rasters 
continues to be a challenging component to the workflow. The segmentation technique as it is 
currently implemented certainly negatively impacts both the processing efficiency and quality of 
the results. While continued experimentation with regard to selecting and scaling various raster 
data to perform the segmentation is likely worthwhile, predicting wetland classes directly to a 
raster would have certain advantages. This unfortunately was never made possible due to apparent 
issues with the Predict Using AutoML tool during workflow development.  

Moreover, the approach used to classify all wetland types alongside upland and water features 
does impact the interpretability of the model confidence. Specifically, for example, a ‘low’ 



 

  
NOVA SCOTIA COMMUNITY COLLEGE – APPLIED GEOMATICS RESEARCH GROUP 56 

 

IMPROVED METHODS FOR WETLAND IDENTIFICATION 

confidence bog segment does not clearly indicate this model is struggling to differentiate this 
feature as a bog vs. another wetland type, of if it is not confident it is a wetland at all. This confusion 
could be resolved by performing the overall classification in stages whereby first wetlands are 
differentiated from non-wetlands and water, and then proceeding to distinguish individual wetland 
types. If in this method, for example, a presence-absence model such as Maximum Entropy were 
used to detect wetlands – this could constitute a mask to in turn restrict and improve various steps 
including band scaling and segmentation which may in turn improve the differentiation of wetland 
types further. An approach to facilitate this technique was experimented with utilizing a simple 
slope-based threshold to determine the scaling for segmentation rasters in attempt to better 
differentiate wetland types, but this was not integrated into the methods proposed here.  

Additionally, further subdividing the analysis over the 39 recognized Ecodistricts of Nova Scotia 
(Neily 2003 and 2017) may yield better results, especially when discerning one wetland 
classification from another. This could be done either by separate rounds of classification, or 
perhaps simply by including the Ecodistrict as categorical variable in the decision tree classifier.  

Ideally, and to make better use of an automated wetland classification, future improvements to 
these methods should attempt to include temporal and environmental attributes. This could be 
done, for example, by compiling Sentinel-2 data and comparing the impact across multiple model 
prediction runs. The resulting changes in wetland coverage could therefore be linked to a specific 
time frame. Similarity, by including in the model, specific environmental attributes perhaps 
relevant to wetland distribution, including temperature – model predictions could then suggest 
potential changes to wetland distributions in relation to various climate projections. This would be 
particularly relevant for salt marshes with respect to sea level rise, which would require we adjust 
the digital elevation model to tide for training, which could similarly be adjusted for prediction 
based on specific sea level rise scenarios.   

Perhaps the most critical way to improve the results of this project would be to thoroughly 
investigate the proposed wetland distributions both in map form and in the field where necessary. 
The data generated from this report represents a significant challenge for comprehensive quality 
assurance and was not a major consideration of this project due to that scope. The results from 
this work do propose major modifications to the existing Nova Scotia wetland inventory, for 
example, overestimation of swamp areas in some cases. However, there may be wetland areas 
which are yet generally unmapped that this project has detected which may warrant further 
investigation.  

In general, this report presents a somewhat robust technique for automatic province wide wetland 
classification, though most aspects of the technique used can be improved in some way or 
another. Generally, limiting the analysis to tools found in ArcGIS when possible and data available 
in Google Earth Engine may have negatively impacted the overall simplicity and efficiency. Many of 
the specific techniques used may benefit from exploring alternative options in future iterations. 
Importantly though, many of the challenges overcome here may have benefit to the province 
outside of wetland mapping. Mapping other important features, such as forest inventory, fire risk, 
impervious surface mapping and more may be more easily undertaken with this overall framework 
in place.   
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6 CONCLUSIONS 
In this report we detail a concise methodology using ArcGIS tools (AutoML) to develop an updated 
wetland inventory for the Province of Nova Scotia. Though the focus of this work should be the 
method as a framework and not the results – we do present a new province wide wetland inventory 
with a reported accuracy of ~94%. This model is based on 2041 training points (where 10% is 
validation) and predict wetlands using the Canadian Wetland Classification System (marshes, 
swamps, bogs, fens, uplands, and water – shallow water not included). Predictions were computed 
based on 38 explanatory variables derived from lidar and satellite derived indexes across 10 million 
segments spanning the province of Nova Scotia with a functional resolution of approximately 10m. 
The overall confidence of the predictions is variable (85.8% +/- 16.0%), possibly due to the coarse 
nature of the geographic segments used. The classification revealed 72% of the area as 'Upland' 
(non-wetland), and 27.5% as wetland. We remove inland water from this percentage as our 
methods do not differentiate ocean from lake water. Among wetlands, swamps were predominant, 
accounting for 88.0% of total wetland area (24.3 % of the province land), with bogs accounting for 
5% of wetlands (1.4 % of the province), fens 4.6% of wetlands (1.3% of province), salt marshes 
1.6% (0.4% of the province), and marshes 0.8% of wetlands (0.2% of the province).  

By area, the existing provincial wetland inventory indicates a total bog and fen area of 1600 sq. km, 
while we detect 1390 sq. km. (a factor of 0.87). Similarly, the inventory contains 430 sq. km. of 
combined salt marshes and marshes, while we detect 346 sq. km. (a factor of 0.81). While these 
other wetland results underpredict current published values slightly, our predicted swamp area 
shows an increase by a factor of 7.3 (12,769 sq. km) compared to the published total area (1,761 
sq. km.). Note that 215 sq. km. of wetland area in the provincial inventory are of an unknown 
wetland classification.  

Our results do indicate a significant overall increase of wetland area when compared to the existing 
Nova Scotia Wetland Inventory (which is approximately 6.8%). Our results, however, when 
restricted by canopy height of areas less than <4.0 m, indicate an overall wetland coverage of 
approximately 7.2% which is much more in line with the published extents. This factor may indicate 
that our approach, vs. previous work, could be better detecting treed swamps, likely due to the use 
of lidar based indexes, though these findings are highly conditional to future ground validation.  

6.1 SUMMARY OF KEY FINDINGS 
ArcGIS tools are at variable states of functionality and documentation. The best forest-based 
classifier at the time of writing this report was determined to be AutoML. Unfortunately, this tool 
was not seemingly paired with a functional method to predict directly to raster output. A positive 
compromise was to predict attributed segments – which added a certain level of spatial flexibility 
to the analysis.  

6.2 FINAL THOUGHTS 
The provincial lidar was pivotal in the success of this project, including complex lidar derivatives 
such as the canopy height model. These data sets Nova Scotia apart from some other jurisdictions 
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wherein we should perhaps become leaders in the adoption and utilization of these data. 
Additional earth observation tools such as Google Earth Engine, when paired with high precision 
lidar, can unlock an unprecedented ability to map and understand changes. Machine learning tools 
empower expert identification to be extrapolated across wide areas of high-resolution data. While 
Nova Scotia is a complex geography of highly variable ecological conditions - the power and detail 
offered by these technologies combined enable us to better understand, manage, and protect our 
diverse landscapes, showcasing a model for effective environmental stewardship. 
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8 APPENDICES 

8.1 PROCESSING TOOLS 

Note this process was conducted on a 12th Gen Intel(R) Core(TM) i9-12900K  3.20 GHz with 128 
GB of usable ram 

Processing steps used for all data presented as results in this report are provided in 
accompaniment to this document as: 

\scripts\workflow_v2: 

_run.py 
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This python script provides an example of the full model run including pathing to the original input 
data locations (ie, run2). For the purposes of testing these tools externally, a full copy of all 38 
explanatory rasters has been provided has been provided at \Outputs\run2\1_rasters. 

Note these rasters do include direct mosaiced layers as described from google earth engine 
(GEE) and are intended for explicitly for the validation of the methods of this report and not 
available to the redistributed.  

Accompanying script files are required to be located with _run.py for the process to function. These 
include:  

• _0_utils.py
o Contains a set of logging and other functions

• _1_generate.py
o Performs the raster input layer resampling and raster index computations

producing 38 explanatory rasters (10 m resolution)
• _2_train.py

o Performs the AutoML training using selected training points and all rasters.
• _3_segment.py

o computes segmentation based on 3 select raster producing vector output
• _4_predict.py

o Iterates over batches of segment polygons to compute wetland prediction and
model confidence per segment. Provides a final merged wetland classification
segment feature class polygon.

For the purposes of testing this script, it is recommended to skip the generate step and utilize the 
provided example rasters as indicated. This can be done with the example provided in _run.py: 

run_test(r"INSERT DIRECTORY LOCATION FOR 20240709_AGRG_NS_Wetlands") 

to run this, modify the section in _run.py to the location where the provided folder 
“20240709_AGRG_NS_Wetlands” was copied locally. Note that this full list of is 257 GB. 

For example, this can be modified as (if placed on the D drive root): 

run_test(r"D:\20240709_AGRG_NS_Wetlands") 

this will be default attempt to process the entire province. 

To set a processing extent, the following can be attempted with a shapefile of a test extent 

run_test(r"INSERT DIRECTORY LOCATION FOR 20240709_AGRG_NS_Wetlands", extent = 

r"PATH TO SHAPEFILE") 

ie: 
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run_test(r"D:\20240709_AGRG_NS_Wetlands", extent = r"D:\test.shp") 

Note: It may also be wise to skip the segmentation step as this an be ram intensive. In such case, 
the user may want to attempt the train and autoML directly using the ArcGIS interface. Note that 
with the provided training data, rasters, and segments, new models and predictions can be 
computed directly but some complications may exist in ensuring explanatory raster names are 
kept consistent between process steps when performing the analysis step by step.  

For continued support and updates to this workflow please reach out to kevin.mcguian@nscc.ca 
for access to the GitHub repository.

8.2 DETAILED METHODS 

8.2.1 Verbose Methods 

This appendix delineates the comprehensive methodology employed for applying an ensemble 
classification model, trained using AutoML, to raster data for enhancing wetland mapping within 
Areas of Interest (AOIs) in Nova Scotia. The workflow is articulated to support replication by 
researchers or GIS professionals, detailing specific GIS tools, input datasets, and procedural steps 
utilized. 

8.2.1.1 Data Inputs 

Training Dataset: A shapefile comprising pre-classified wetland and non-wetland samples for 
model training. 

Environmental and Topographical Rasters: A collection of rasters, including the Topographic 
Wetness Index (TWI), Chrome DEM, Digital Elevation Model (DEM), and others, employed as 
explanatory variables for model training and prediction. 

Composite Raster: A merged raster combining all environmental and topographical rasters post-
scaling and preprocessing for use in the model application phase. 

8.2.1.2 Thresholds and Parameters 

AutoML Configuration: Parameters such as total time limit for the AutoML run and the percentage 
of data designated for validation. 

Scaling Factors: Specific minimum and maximum values used for normalizing rasters like DEM 
and NDVI to a 0-255 range, facilitating better model performance. 

8.2.1.3 Analysis Steps 

mailto:kevin.mcguian@nscc.ca
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Model Training with AutoML: Utilize the TrainUsingAutoML function within ArcGIS's GeoAI Tools 
toolbox, specifying the training dataset, the path for the output model, target prediction variable, 
and explanatory rasters. 

Output consists of the trained model and a comprehensive report detailing the model's 
performance. 

Raster Data Preprocessing: Create a composite raster by merging and scaling environmental and 
topographical rasters according to predefined thresholds, preparing the dataset for segmentation 
and prediction. 

Segmentation: Apply the SegmentMeanShift tool on the preprocessed composite raster to 
delineate the landscape into meaningful units (segments) for subsequent prediction. 

8.2.1.4 Application of the Trained Model: 

Execute the trained AutoML model on the segmented raster using the PredictUsingAutoML 
function, matching the explanatory variables defined during training to the segments. 

8.2.1.5 Post-processing: 

Convert the prediction output raster to a polygon feature class for easier analysis and visualization. 

Join attributes from the prediction result to the polygon feature class, enriching it with the model’s 
predictions and associated confidence scores. 

8.2.1.6 Outputs 

Wetland Prediction Polygons: Polygons derived from the model's predictions, indicating the 
predicted presence of wetlands within the AOIs. 

These polygons are subsequently subjected to a quality assurance process to ensure their 
accuracy and reliability. 

8.2.1.7 Tools and Functions Utilized 

ArcGIS Tools: Tools from ArcGIS and the GeoAI toolbox, including TrainUsingAutoML, 
SegmentMeanShift, Raster to Polygon Conversion, and Join Field. 

Custom Scripting: Python scripts within the ArcGIS environment to automate the application of 
the ensemble classification model across various AOIs, ensuring efficient and scalable analysis. 

For more information and access to the script in a GitHub repository, contact 
kevin.mcguigan@nscc.ca 
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